

mental analysis calcd (%) for $C_{664}H_{1136}Cl_{32}Ru_{16}O_{16}P_{32}N_{30}$: C 58.90, H 8.46; found: C 58.73, H 8.61.

Received: July 9, 2002

Revised: September 30, 2002 [Z19698]

- [1] G. R. Newkome, C. N. Moorefield, F. Vögtle, *Dendrimers and Dendrons, Concepts, Synthesis and Applications*, VCH-Wiley, Weinheim, **2001**.
- [2] a) M. R. Leduc, C. J. Hawker, J. Dao, J. M. J. Fréchet, *J. Am. Chem. Soc.* **1996**, *118*, 11111; b) I. Gitsov, P. T. Ivanova, J. M. J. Fréchet, *Macromol. Rapid Commun.* **1994**, *15*, 387.
- [3] E. Cloutet, J.-L. Fillaut, Y. Gnanou, D. Astruc, *J. Chem. Soc. Chem. Commun.* **1994**, 2433.
- [4] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, *J. Am. Chem. Soc.* **2000**, *122*, 8168.
- [5] P. Wijkens, J. T. B. H. Jastrzebski, P. A. van der Schaaf, R. Kolly, A. Hafner, G. van Koten, *Org. Letters* **2000**, *2*, 1621.
- [6] a) H. Beerens, F. Verpoort, L. Verdonck *J. Mol. Catal.* **2000**, *151*, 279; b) H. Beerens, F. Verpoort, L. Verdonck *J. Mol. Catal.* **2000**, *159*, 197.
- [7] Metal–carbene complexes in catalysis: a) K. H. Doetz, *Transition Metal Carbene Complexes*, Verlag Chemie, Weinheim, **1983**; b) M. Brookhart, W. B. Studabaker, *Chem. Rev.* **1987**, *87*, 411; c) K. J. Ivin, J. C. Mol, *Olefin Metathesis and Metathesis Polymerization*, Academic Press, San Diego, **1997**; d) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare, M. O'Regan, *J. Am. Chem. Soc.* **1990**, *112*, 8378; e) J. P. A. Harrity, M. S. Visser, J. D. Gleason, A. H. Hoveyda, *J. Am. Chem. Soc.* **1997**, *119*, 1488; f) R. H. Grubbs, S. Chang, *Tetrahedron* **1998**, *54*, 4413; g) *Alkene Metathesis in Organic Synthesis*, (Ed.: A. Fürstner), Springer, Berlin, **1998**; h) J. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, A. H. Hoveyda, *J. Am. Chem. Soc.* **1999**, *121*, 791; i) A. Fürstner, *Angew. Chem.* **2000**, *112*, 3140; *Angew. Chem. Int. Ed.* **2000**, *39*, 3012.
- [8] Grubbs ruthenium–carbene catalysts of olefin-metathesis including ROMP and RCM: a) S. T. Nguyen, R. H. Grubbs, J. W. Ziller, *J. Am. Chem. Soc.* **1993**, *115*, 9858; b) P. Schwab, R. H. Grubbs, J. W. Ziller, *J. Am. Chem. Soc.* **1996**, *118*, 100; c) T. M. Trnka, R. H. Grubbs, *Acc. Chem. Res.* **2001**, *34*, 18.
- [9] Reviews on dendritic catalysts: a) G. E. Oosterom, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, *Angew. Chem.* **2001**, *113*, 1878; *Angew. Chem. Int. Ed.* **2001**, *40*, 1828; b) R. Kreiter, A. W. Kleij, R. J. M. Klein Gebbink, G. van Koten, *Top. Curr. Chem.*, **2001**, *217*, 163; c) D. Astruc, F. Chardac, *Chem. Rev.* **2001**, *101*, 2991.
- [10] Comprehensive reviews on metallocendrimers: a) G. R. Newkome, E. He, C. N. Moorefield, *Chem. Rev.* **1999**, *99*, 1689; b) H. M. Janssen, E. W. Meijer, *Chem. Rev.* **1999**, *99*, 1665; c) I. Cuadrado, M. Morán, C. M. Casado, B. Alonso, J. Losada, *Coord. Chem. Rev.* **1999**, *189*, 123; d) M. A. Hearshaw, J. R. Moss, *Chem. Commun.* **1999**, 1. See also reference [9].
- [11] P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, *Angew. Chem.* **1995**, *107*, 2179; *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 2039.
- [12] S. M. Hansen, M. A. O. Volland, F. Rominger, F. Eisenträger, P. Hofmann, *Angew. Chem.* **1999**, *111*, 1360; *Angew. Chem. Int. Ed.* **1999**, *38*, 1273; S. Hansen, F. Rominger, M. Metz, P. Hofmann, *Chem. Eur. J.* **1999**, *5*, 557; C. Adlhart, M. A. O. Volland, P. Hofmann, P. Chen, *Helv. Chim. Acta* **2000**, *83*, 3306.
- [13] D. Amoroso, D. E. Fogg, *Macromolecules* **2000**, *33*, 2815.
- [14] C. Six, K. Beck, A. Wegner, W. Leitner, *Organometallics* **2000**, *19*, 4639.
- [15] M. T. Reetz, G. Lohmer, R. Schwickardi, *Angew. Chem.* **1997**, *109*, 1529; *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 1526.
- [16] E. Alonso, D. Astruc, *J. Am. Chem. Soc.* **2000**, *122*, 3222.

[17] Single crystals of **2A** from CH_2Cl_2 /pentane at $4^\circ C$; monoclinic; space group $P2_1/c$; $a = 25.0209(4)$, $b = 9.3092(1)$, $c = 18.5033(2)$ Å; $\beta = 93.8485(5)^\circ$; $V = 4300.2(2)$ Å 3 , $\rho_{\text{calcd}} = 1.304$ mg m $^{-3}$ for $Z = 4$; $R_1 = 0.034$; $wR_2 = 0.105$; $R_{\text{int}} = 0.0235$. CCDC-194781 (**2A**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit @ccdc.cam.ac.uk).

[18] M. S. Sanford, M. Ulman, R. H. Grubbs, *J. Am. Chem. Soc.* **2001**, *123*, 749.

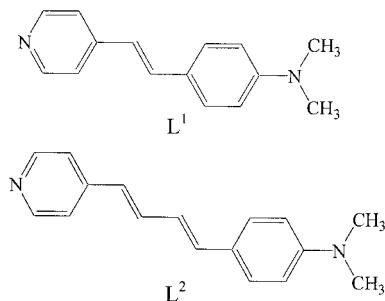
Concentration Affects NLO Behavior

Large, Concentration-Dependent Enhancement of the Quadratic Hyperpolarizability of $[Zn(CH_3CO_2)_2(L)_2]$ in $CHCl_3$ on Substitution of Acetate by Triflate**

Francesca Tessore, Dominique Roberto,* Renato Ugo, Patrizia Mussini, Silvio Quici, Isabelle Ledoux-Rak, and Joseph Zyss

Organometallic and coordination compounds can offer a great diversity of tunable electronic properties that act on their second-order nonlinear optical (NLO) response.^[1] The quadratic hyperpolarizability, measured by the electric field

[*] Prof. D. Roberto, Dr. F. Tessore, Prof. R. Ugo
Dipartimento di Chimica Inorganica Metallorganica e Analitica
dell'Università di Milano
INSTM UdR di Milano and
Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM)
Via G. Venezian, 21, 20133 Milano (Italy)
Fax: (+39) 02-5031-4405
E-mail: dominique.roberto@unimi.it

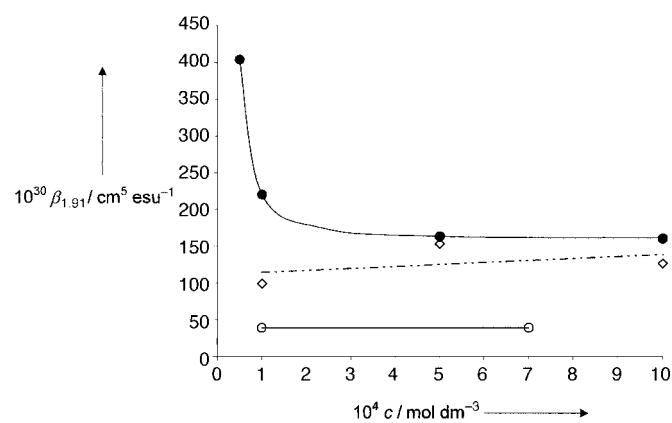

Prof. P. Mussini
Dipartimento di Chimica Fisica ed Elettrochimica
dell'Università di Milano
Via G. Venezian, 21, 20133 Milano (Italy)

Dr. S. Quici
Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM)
Via C. Golgi 19, 20133 Milano (Italy)

Prof. I. Ledoux-Rak, Prof. J. Zyss
LPQM, Ecole Normale Supérieure de Cachan
61 avenue du Président Wilson, 94230 Cachan (France)

[**] $L = 4,4'$ -trans- $NC_5H_4(CH=CH)C_6H_4NMe_2$ or $trans,trans-NC_5H_4(CH=CH)_2C_6H_4NMe_2$. This work was supported by the MIUR and by the CNR (Progetto Finalizzato Materiali Speciali per Tecnologie Avanzate II, year 2000, Research Title: *Sintesi e sviluppo di composti molecolari organometallici e di coordinazione con proprietà di ottica non lineare (NLO) e con proprietà elettriche anisotropiche e isotropiche*).

induced second harmonic (EFISH) generation technique,^[2] of push–pull stilbazole ligands such as 4,4'-*trans* or *trans,trans*-NC₅H₄(CH=CH)_nC₆H₄NMe₂ (*n*=1 and 2 for L=L¹ and L², respectively) usually increases on coordination to various acceptor centers.^[3] According to both theoretical^[3b] and


solvatochromic^[3e] investigations, this enhancement mainly originates from the red shift of the intraligand charge transfer (ILCT) $n \rightarrow \pi^*$ transition, which is often controlled by the increased Lewis acceptor properties of the metal atom^[3d] and therefore by the ancillary ligands that tune these properties.^[3e] However, up to now the effect of a very strong electron-withdrawing ancillary ligand such as the triflate anion has not been investigated.

A large enhancement of the dipole moment μ of [ZnX₂L₂] complexes (X=CH₃CO₂, CF₃CO₂, CF₃SO₃) in anhydrous CHCl₃^[4] occurs on coordination of the triflate ligand, together with a red shift of the ILCT transition of the stilbazoles L¹ or L² that is much larger ($\Delta\lambda_{\max}=116$ –123 nm) than usually occurs on coordination to “Zn(CH₃CO₂)₂” or “ZnCl₂” ($\Delta\lambda_{\max}=2$ –36 nm, Table 1)^[3e] or, despite the well-known positive effect of chelation,^[3e] on coordination to the Zn^{II} complexes of electronically related chelating ligands such as 4-dialkylaminostyryl-2,2'-bipyridine (59–72 nm)^[5a,b] or 4,4'-bis(dialkylaminophenylazo)-2,2'-bipyridine and 4,4'-bis(dialkylaminophenylimino)-2,2'-bipyridine ($\Delta\lambda_{\max}=45$ –58 nm).^[5c] Consistent with such a large red shift, the quadratic hyperpolarizability $\beta_{1,91}$, measured in anhydrous CHCl₃ at an incident wavelength of 1.907 μ m by the EFISH technique,^[2] of [Zn(CF₃SO₃)₂L₂] (L=L¹, L²) complexes is much higher than that of related Zn^{II} complexes with Cl, CH₃CO₂, and

Table 1: Electronic spectra, dipole moments, and $\beta_{1,91}$ values of various [ZnX₂L₂¹] and [ZnX₂L₂²] complexes (X=CH₃CO₂, CF₃CO₂, CF₃SO₃).

Complex	$10^4 c$ [M]	λ_{\max} [nm] ^[a]	μ [D] ^[a]	$10^{30} \mu \beta_{1,91}$ [D cm ⁵ esu ⁻¹] ^[a]	$10^{30} \beta_{1,91}$ [cm ⁵ esu ⁻¹] ^[a]	EF ^[b]
[Zn(CH ₃ CO ₂) ₂ L ₂ ¹]	1–7	376 ^[3e]	8.0 ^[3e]	316	39	–
[Zn(CF ₃ CO ₂) ₂ L ₂ ¹]	1–7	420 ^[3e]	10.5 ^[3e]	512	49	1.3
[Zn(CF ₃ SO ₃) ₂ L ₂ ¹]	10	490	16.7	2715	163	4.2
				2720	163	4.2
	5			3670	220	5.6
	1			6750	404	10.4
[Zn(CH ₃ CO ₂) ₂ L ₂ ²]	1–7	406	6.7	680	101	–
[Zn(CF ₃ SO ₃) ₂ L ₂ ²]	7	519	14.7	3840	261	2.6
	1			6100	415	4.1

[a] In anhydrous chloroform. [b] EF is $\beta_{1,91}$ enhancement factor with respect to the related [Zn(CH₃CO₂)₂L₂] complex, that is, $\beta_{1,91}([ZnX₂L₂]) / \beta_{1,91}([Zn(CH₃CO₂)₂L₂])$.

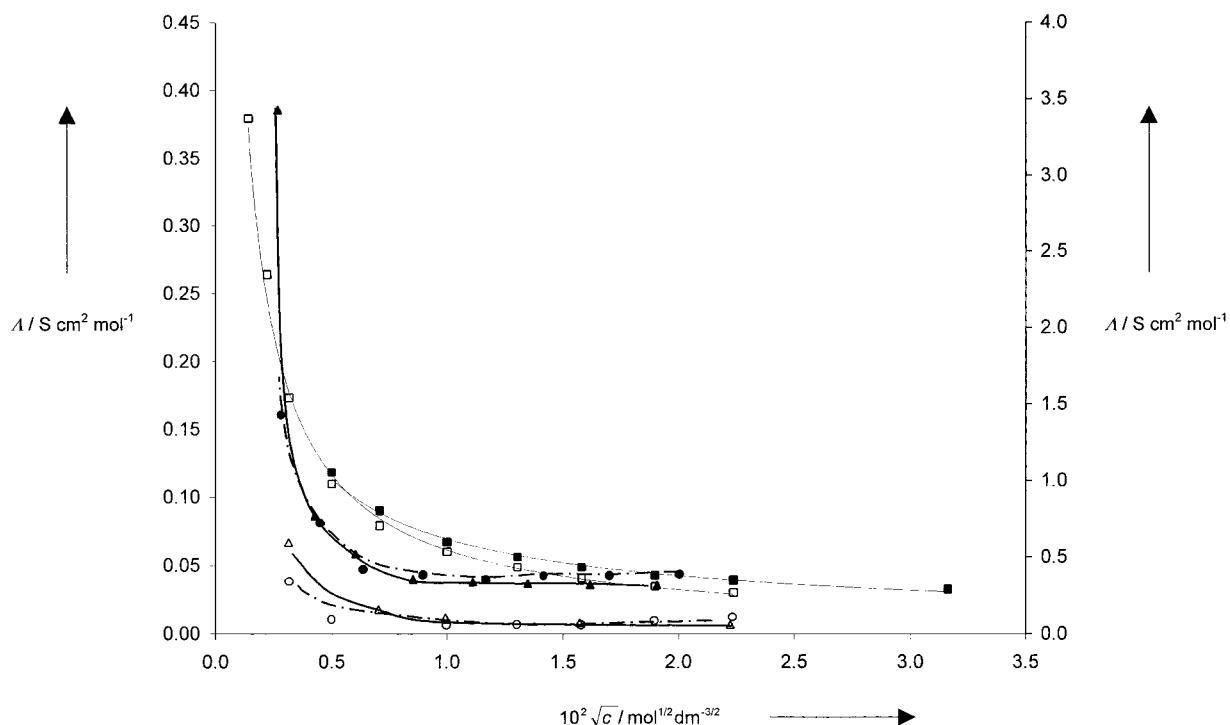


Figure 1. Dependence of $\beta_{1,91}$ on concentration for [Zn(CH₃COO)₂L₂¹] (○), [Zn(CF₃SO₃)₂L₂¹] (●), and NPP (reference; ◇) in anhydrous CHCl₃.

CF₃CO₂ ancillary ligands (Table 1).^[3e] This increase in the second-order NLO response is far higher than those reported up to now for the coordination of these push–pull stilbazoles to various metal centers or even to the very strong Lewis acid BF₃.^[3a–e]

Surprisingly, the $\beta_{1,91}$ value of these triflate complexes is dependent on concentration (Table 1). At concentrations below about 10⁻⁴ M, it increases abruptly with decreasing concentration, and reaches very large values (Figure 1), an effect that is not observed for the acetate or trifluoroacetate complexes (Table 1). This large increase does not result from inappropriate EFISH measurements owing to high dilution, since $\beta_{1,91}$ of *N*-(4-nitrophenyl)-L-prolinol (NPP), taken as reference and measured under the same conditions by the EFISH technique,^[2] remains unchanged even at a concentration of 10⁻⁴ M (Figure 1).

Given the weak nucleophilicity of the triflate anion, these results could be explained by some solvolysis of strong ion pairs, as suggested by the fact that it was not possible to carry out EFISH^[2] or capacitance measurements^[4] when CHCl₃ was not completely anhydrous, because traces of water lead to dissociation of strong ion pairs into ionic species which hinder EFISH and capacitance measurements. Careful investigations of the electrical conductivity of anhydrous CHCl₃ solutions (Figure 2) of [ZnX₂L₂] complexes (X=CH₃CO₂, CF₃CO₂, CF₃SO₃) are in agreement with this proposal. According to Figure 2, both [Zn(CH₃COO)₂L₂¹] and [Zn(CH₃COO)₂L₂²] are practically undissociated in the concentration range 10⁻³–10⁻⁴ M, while the complexes with the triflate ligand show a slightly higher conductivity, but much lower than that of reference ionic species such as tetrabutylammonium triflate and acetate. The conductivities of these two salts are comparable, so that we can safely assume that in anhydrous CHCl₃ both triflate and acetate anions have comparable ionic mobilities.

Figure 2. Dependence of molar conductances Λ of zinc acetate and triflate complexes of ligands L^1 and L^2 (left y axis) and of tetrabutylammonium acetate and triflate salts (right y axis) on the square root of the concentration c in anhydrous CHCl_3 at 298 K. $\circ = [\text{Zn}(\text{CH}_3\text{COO})_2\text{L}_2^1]$, $\triangle = [\text{Zn}(\text{CH}_3\text{COO})_2\text{L}_2^2]$, $\bullet = [\text{Zn}(\text{CF}_3\text{SO}_3)_2\text{L}_2^1]$, $\blacktriangle = [\text{Zn}(\text{CF}_3\text{SO}_3)_2\text{L}_2^2]$, $\square = [\text{Bu}_4\text{N}]\text{CH}_3\text{COO}$, $\blacksquare = [\text{Bu}_4\text{N}]\text{CF}_3\text{SO}_3$.

Therefore, the slight but significant conductivity enhancement observed on passing from acetate to triflate ancillary ligands (Figure 2) confirms the hypothesis of some solvolysis of the triflate anion with concomitant strong ion pairing. Strong ion pairing in anhydrous CHCl_3 was already proposed to explain the significant second-order NLO response, measured by the EFISH technique,^[2] for the iodide salt of the alkylated cation of 4,4'-*trans*- $\text{NC}_5\text{H}_4\text{CH}=\text{CHC}_6\text{H}_4\text{NBu}_2$.^[6] Accordingly, the sharp conductivity increase towards limiting values for triflate complexes at concentrations below 10^{-4} M indicates a sharp increase in the degree of ionization, as expected for increased dissociation of ion pairs with increasing dilution. It is noteworthy that the molar conductivity versus concentration trend (Figure 2) is similar to that of $\beta_{1,91}$ versus concentration (Figure 1). Therefore, the large increase in $\beta_{1,91}$ at very low concentrations must be attributed to increased dissociation of strong ion pairs owing to solvolysis of the triflate ligand.

Nevertheless, the $\beta_{1,91}$ values of $[\text{Zn}(\text{CF}_3\text{SO}_3)_2\text{L}_2]$ complexes at concentrations above 10^{-4} M are already three to six times higher than those of the related acetate or trifluoroacetate complexes (Table 1). This unusual result supports a mechanism for increasing the positive charge on the stilbazole system, such as ion pairing, which should favor the unusually high red shift of their ILCT transitions. In fact this increase cannot be explained solely by the stronger inductive electron-withdrawing effect of triflate relative to trifluoroacetate. Consequently, an increased concentration (albeit still very low, because the EFISH measurement is possible) of the free cation $[\text{Zn}(\text{CF}_3\text{SO}_3)_2\text{L}_2]^+$, which, as expected for a localized

positive charge, must have a very high $\beta_{1,91}$ value, is the origin of the large $\beta_{1,91}$ value at high dilution.

A possible general role of the triflate ligand in increasing the quadratic hyperpolarizability, measured in anhydrous CHCl_3 solution, of complexes of ligands L^1 or L^2 with other metals or of Zn^{II} complexes with chelating nitrogen-donor π -delocalized ligands^[3e,5] is under investigation, as is the effect on the second-order NLO response of Zn^{II} complexes of ligands L^1 or L^2 and less strongly electron withdrawing sulfonated ancillary ligands, to determine whether the strong increase in the quadratic hyperpolarizability results only from the sulfonate nature of the ligand, or whether it also requires a strongly electron-withdrawing CF_3 group. Although the concentration used for the experimental determination of the quadratic hyperpolarizability is traditionally not reported, probably because it is a molecular property which should not vary with concentration, here we have provided clear evidence that quadratic hyperpolarizabilities can be strongly concentration dependent.

Experimental Section

Complexes $[\text{ZnX}_2\text{L}_2]$ ($\text{X} = \text{CH}_3\text{CO}_2, \text{CF}_3\text{CO}_2, \text{CF}_3\text{SO}_3$; $\text{L} = \text{L}^1$ or L^2) were prepared^[3e] by allowing a stoichiometric mixture of $\text{ZnX}_2 \cdot x \text{H}_2\text{O}$ (kept under vacuum at 100°C for 3 h) and L in CH_2Cl_2 to stir at room temperature in the dark for 3 h. Removal of the solvent under vacuum and recrystallization from dichloromethane/pentane afforded the complexes, which were stored under N_2 in the dark and characterized by elemental analysis, ^1H NMR spectroscopy, and mass spectrometry (FAB +). EFISH measurements^[3d,e] were carried out in anhydrous CHCl_3 (purchased from Fluka and used without further

treatment) at an incident wavelength of $1.907\text{ }\mu\text{m}$. Dipole moments μ were determined in anhydrous CHCl_3 by the Guggenheim method.^[4] All solutions for EFISH, conductivity, and capacitance measurements were used immediately after preparation.

Received: August 2, 2002 [Z19874]

- [1] a) N. J. Long, *Angew. Chem.* **1995**, *107*, 37–55; *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 21–38; b) *Optoelectronic Properties of Inorganic Compounds* (Eds.: D. M. Roundhill, J. P. Fackler, Jr.), Plenum, New York, **1999**; c) J. Heck, S. Dabek, T. Meyer-Friedrichsen, H. Wong, *Coord. Chem. Rev.* **1999**, *190*–*192*, 1217–1254; d) H. Le Bozec, T. Renouard, *Eur. J. Inorg. Chem.* **2000**, 229–239; e) P. G. Lacroix, *Eur. J. Inorg. Chem.* **2001**, 339–348; f) S. Di Bella, *Chem. Soc. Rev.* **2001**, *30*, 355–366.
- [2] a) B. F. Levine, C. G. Bethea, *Appl. Phys. Lett.* **1974**, *24*, 445–447; b) J. L. Oudar, *J. Chem. Phys.* **1977**, *67*, 446–457; c) K. D. Singer, A. F. Garito, *J. Chem. Phys.* **1981**, *75*, 3572–3580; d) I. Ledoux, J. Zyss, *Chem. Phys.* **1982**, *73*, 203–213.
- [3] a) D. W. Bruce, A. Thornton, *Mol. Cryst. Liq. Cryst.* **1993**, *231*, 253–256; b) D. R. Kanis, P. G. Lacroix, M. A. Ratner, T. J. Marks, *J. Am. Chem. Soc.* **1994**, *116*, 10089–10102; c) M. J. G. Lesley, A. Woodward, N. J. Taylor, T. B. Marder, I. Cazenobe, I. Ledoux, J. Zyss, A. Thornton, D. W. Bruce, A. K. Kakkar, *Chem. Mater.* **1998**, *10*, 1355–1365; d) D. Roberto, R. Ugo, S. Bruni, E. Cariati, F. Cariati, P. C. Fantucci, I. Invernizzi, S. Quici, I. Ledoux, J. Zyss, *Organometallics* **2000**, *19*, 1775–1788; e) D. Roberto, R. Ugo, F. Tessore, E. Lucenti, S. Quici, S. Vezza, P. C. Fantucci, I. Invernizzi, S. Bruni, I. Ledoux-Rak, J. Zyss, *Organometallics* **2002**, *21*, 161–170.
- [4] a) E. A. Guggenheim, *Trans. Faraday Soc.* **1949**, *45*, 714–720; b) H. B. Thompson, *J. Chem. Educ.* **1966**, *43*, 66–73.
- [5] a) M. Bourgault, C. Mountassir, H. Le Bozec, I. Ledoux, G. Pucetti, J. Zyss, *J. Chem. Soc. Chem. Commun.* **1993**, 1623–1624; b) M. Bourgault, K. Baum, H. Le Bozec, G. Pucetti, I. Ledoux, J. Zyss, *New J. Chem.* **1998**, 517–522; c) A. Hilton, T. Renouard, O. Maury, H. Le Bozec, I. Ledoux, J. Zyss, *Chem. Commun.* **1999**, 2521–2522.
- [6] V. Alain, M. Blanchard-Desce, I. Ledoux-Rak, J. Zyss, *Chem. Commun.* **2000**, 353–354.

Stereoselective Glycosylations

Dual Stereoselectivity of 1-(2'-Carboxy)benzyl 2-Deoxyglycosides as Glycosyl Donors in the Direct Construction of 2-Deoxyglycosyl Linkages^{**}

Kwan Soo Kim,* Jin Park, Yong Joo Lee, and Yong Sung Seo

2-Deoxyglycosides are found as the integral part of many important natural products.^[1] The stereocontrolled construction of 2-deoxyglycosyl linkages is more challenging than that of usual glycosyl linkages as the 2-deoxyglycosyl donors lack the stereodirecting substituent at C2 and the resulting glycosides are more acid-labile. Although the synthesis of 2-deoxy- α -glycopyranosides is relatively easier, the construction of 2-deoxy- β -glycopyranosyl linkages is a far more challenging problem^[2] as the axial addition of a glycosyl acceptor to the oxocarbenium ion intermediate is a favorable process owing to the anomeric effect.^[3] Therefore, the frequently used method for the synthesis of 2-deoxy- β -glycopyranosides employs the glycosyl donors with equatorial heteroatom substituents at C2 that can participate during glycosylation to direct the incoming acceptor to the β -face and are removed at a later stage.^[4] Nevertheless, a direct and efficient method for the construction of the 2-deoxy- β -glycopyranosyl linkage by using a 2-deoxyglycopyranosyl donor would be more efficient and practical than the indirect methods. Although a few methods (e.g. glycosylation mediated by silver silicate^[5] or silver zeolite,^[6] the 2-deoxyglycosyl phosphite/TMSOTf (TMSOTf = trimethylsilyl trifluoromethanesulfonate) method,^[7] and the glycosylation of 2-deoxyglycosyl fluoride with TiF_4 ^[8] or SnCl_2 ^[9]) have been devised, the direct synthesis of 2-deoxy- β -glycopyranosides from 2-deoxyglycosyl donors still remains a difficult task. We have previously introduced (2'-carboxy)benzyl (CB) glycosides as glycosyl donors for the efficient β -mannopyranosylation.^[10] We applied this CB glycoside methodology to the direct synthesis of 2-deoxyglycopyranosides and herein report the preparation of CB 2-deoxyglycosides from glycals and their α - or β -stereoselectivity (dual stereoselectivity) as glycosyl donors in the glycosylation reaction, depending on their protecting groups.

CB 2-deoxyglucoside **4** was readily obtained from the tribenzylglucal **1** as shown in Scheme 1. CB 4,6-*O*-benzylidene-2-deoxyglucoside **7**, on the other hand, was prepared from a 3,4,6-tri-*O*-acetyl-D-glucal via 2-deoxyglycosyl bromide **5**.^[13] Glycosylations of the CB 2-deoxyglycosyl donors **4** and **7** were performed with primary alcohol acceptors **8–12** and with secondary alcohol acceptors **13–17**. Glycosylation of the benzyl-protected donor **4** with primary alcohol acceptors

[*] Prof. Dr. K. S. Kim, J. Park, Y. J. Lee, Y. S. Seo
Department of Chemistry, Yonsei University
Seoul 120-749 (Korea)
Fax: (+82) 2-364-7050
E-mail: kwan@yonsei.ac.kr

[**] This work was supported by a grant from KOSEF-CMDS (Center for Molecular Design and Synthesis).